
ggisr_retry_sim_ac.m Page 1

function [calls, paths, ss] = ggisr_retry_sim_ac(sysinfo,sysstate,calls,callmax)
% function [calls, paths, ss] = ggisr_retry_sim_ac(sysinfo,sysstate,calls,callmax)
% A simulation for a G(t)/GI(t)/s/r + retrials queue.
% No Revisits!
% This version uses an array (hence the _a),
% instead of a heap, for event management.
% It also relies on outside random number generators for all randomness
% for each _c_all, so we can use _c_ommon random numbers.

% sysinfo contains:
% int nservers
% int nbuf: number of buffer spaces (not incl. servers)
% double maxtraffic: (in Erlangs), to hint how big orbit might get
%
% No Longer Used:
% function_handle a_func: inter-arrival function
% function_handle svc_dur_func:takes arguments nrows, ncols, distrib_struct
% function_handle r_dur_func: takes arguments nrows, ncols, distrib_struct, type
% double[][2] v_probs:revisit probs, v_probs(1,0+1)=Pr{revisit after 1st svc, type 0}

% calls contains:
% int ncalls: usually =length(arriv)=length(svc_dur) etc,
% but sometimes those arrays will be longer than ncalls, and have unused parts.
% int n_outside_calls: number of calls originating from outside,
% that is, revisits don't count.
% double[] arriv: arrival epoch for each call
% double[] svc_dur: service duration for each call
% double[][] ret_durs; if any are <0 that indicates quit-retrying.
% int[] b_vals:balking threshold: balk if >= that number in queue.
% e.g. if =0, will always balk
% boolean[] timeout: did it timeout?
% int[] n_tries
% int[] n_visits
% double[] qtime: the epoch that this call entered the queue
% double[] wq: duration of wait in the queue itself
% double[] wo: duration of wait in orbit
% no longer used:int[] parent (often sparse): ID number of the parent of this call
% no longer used:int[] child (often sparse): ID number of the child of this call
% Okay, we need clear definitions for n_visits and n_tries:
% A try is any attempt to enter service or the queue.
% Thus, every call tries at least once (even if it balks & doesn't enter orbit).
% A visit is a successful entry into the queue or straight into service.
% Thus, a call that tries but is blocked or balks and doesn't come back,
% or enters orbit, retries, and gives up, has n_visits = 0.
% A revisiting call inherits its parent's n_visits,
% but not n_tries.
% n_visits is only updated when someone enters the queue
% or enters service directly (w/o waiting in the queue),
% n_tries is only updated when someone tries or retries, _not_ upon
% entry into orbit.

% paths contains
% int path_size (number of things in the path)
% double[] epochs
% char[] etypes
% int[] n_orbit
% int[] n_sq (service plus queue)
% the n_ columns are the value just _after_ the associated epoch

% Event types (internal):
% a = arrival from outside
% s = service completion, no revisit
% r = retrial from orbit
% e = error, should not be seen!
% x = end-of-simulation

ggisr_retry_sim_ac.m Page 2

% Event result types
% A = arrival from outside enters sq
% a = arrival from outside balks, enters orbit
% b = arrival from outside balks, gives up
% S = service complete, no revisit
% v = service complete, revisit -> orbit
% R = retry from orbit, enters sq
% o = retry from orbit, balks, enters orbit
% r = retry from orbit, balks, gives up

% ss is the output version of sysstate. Both contain:
% initialize_me: 0 if things are already initialized, 1 if ggisr_retry_sim
% should initialize for itself.
% int n_sq : number in servers+queue
% int n_o : number in orbit
% double CLK : the system clock
% int[] callq : array of which calls are in the queue, length=nbuf
% int qhead : integer saying which call in the queue is at the front;
% eg qhead=10, then callq(10+1)=ID of first call, callq(11+1) = ID of 2nd call
% int qlast : integer saying which call is last in the queue, callq(qlast+1)
% the +1) is so qhead, qlast can be zero-based, easier for mod()
% If there's just one call in the queue, qlast==qhead.

% double[3][] etimes
% etimes is a 3-by-many array of event times. Default values should be +Inf.
% row 1 is for arrivals (we'll only really use the first element of that row),
% row 2 is for service completions
% row 3 is for retrials
% int[3][] ecalls
% is an array of the same size that holds call ID's for the corresponding
% event times. Note that we don't have to store event types--they are implicit
% in which row of the array something is stored at.
etypelist='asr'; % arrivals, services, retrials

si = sysinfo;
ss = sysstate;

calls.ncalls = 0;
calls.n_outside_calls = 0;
% preallocate memory for these, so we don't spend time increasing their
% allocations during the while-loop.
guess_ncalls = length(calls.arriv);

%calls.arriv = NaN * ones(guess_ncalls,1);
%calls.svc_dur = NaN * ones(guess_ncalls,1);
%calls.timeout = NaN * ones(guess_ncalls,1);
calls.n_tries = NaN * ones(guess_ncalls,1);
calls.qtime = NaN * ones(guess_ncalls,1);
calls.wq = NaN * ones(guess_ncalls,1);
calls.wo = NaN * ones(guess_ncalls,1);
calls.n_visits = NaN * ones(guess_ncalls,1);
%calls.parent = sparse(guess_ncalls,1);
%calls.child = sparse(guess_ncalls,1);

% initialize the paths variable
paths.path_size = 0;
guess_num_events = callmax * 4;
paths.etypes(guess_num_events) = 'e';
paths.epochs = zeros(guess_num_events,1);
paths.n_orbit = zeros(guess_num_events,1);
paths.n_sq = zeros(guess_num_events,1);
paths.guess_num_events = guess_num_events;
pathlen = length(paths.epochs);

ggisr_retry_sim_ac.m Page 3

nservers = si.nservers;
ncols_ret_durs = size(calls.ret_durs,2);

% If we're told to initialize for ourselves, schedule that first arrival.
if(ss.initialize_me == 1)
 ss.qhead = 0;
 ss.qlast = -1;
% [iat] =feval(si.a_func,1,1,si.a_dist,ss.CLK); % iat = inter-arrival time
% tmp = ss.CLK + iat;
 n = min(find(calls.arriv >= ss.CLK)); % find first call to arrive
 % after initial CLK value.
 tmp = calls.arriv(n);
 if(n == callmax)
 flag = 1 ;
 end
 calls.ncalls = n;
 calls.n_outside_calls = 1;
 calls.n_tries(n) = 1;
 calls.n_visits(n) = 0;
 calls.wo(n) = 0;
 calls.wq(n) = 0;
 % get service duration, call it "sdur"
% [dur, timeout] = feval(si.svc_dur_func,1,1,si.svc_dur_dist);
 sdur = calls.svc_dur(n);

 % guess a heap size
 rho = si.maxtraffic / si.nservers ;
 if(max(size(calls.ret_durs))>1 && all(calls.ret_durs(:,1) == 0))
 guess_max_orbit_size = 0;
 elseif(rho < 1)
 guess_max_orbit_size = 2 * rho / (1-rho) ;
 else % rho>= 1
 guess_max_orbit_size = 5*(si.maxtraffic - si.nservers);
 end
 guess_max_heap_size = si.nservers + si.nbuf + guess_max_orbit_size + 1;
 guess_max_heap_size = ceil(guess_max_heap_size);
 % set up the array that keeps track of event times
 etimes = inf * ones(3,round(max(guess_max_orbit_size,si.nservers)));
 % set up the array that keeps track of event CallID
 ecalls = NaN * ones(size(etimes));

 % and schedule the first event, an arrival
 etimes(1,1) = tmp;
 ecalls(1,1) = n;

end

old_CLK = 0;
% get next event
[tmp_times, indcs] = min(etimes,[],2); % the 2 means operate on rows
[ss.CLK, indx] = min(tmp_times);
etype = etypelist(indx);
ecall = round(ecalls(indx,indcs(indx))); % the round() should be redundant,
% but hopefully it will convince matlab that it's an integer, and okay to use
% as an array index.

flag = 0;
while(not(flag))
% etimes
% ecalls
% fprintf(1,'CLK %g type %s ecall %d\n',ss.CLK,etype,ecall);
% fprintf(1,'n_sq %d n_o %d\n',ss.n_sq, ss.n_o);
% fprintf(1,'CLK - old_CLK %g\n',ss.CLK - old_CLK);

ggisr_retry_sim_ac.m Page 4

%etype
 switch etype
 case 'x' % the ending event
 etype_report = 'x';
 flag = 1;
%%

 case 'a' % arrival from outside
 etype_report = 'e'; % just for now
 % create next call
%[iat] = feval(si.a_func,1,1,si.a_dist,ss.CLK); % iat = inter-arrival time
% tmp = ss.CLK + iat;
 n = calls.ncalls + 1;
 tmp = calls.arriv(n);
 calls.n_outside_calls = calls.n_outside_calls + 1;
 if(n == callmax)
 flag = 1 ;
 end
 calls.ncalls = n;
 calls.n_tries(n) = 1;
 calls.n_visits(n) = 0;
 calls.wo(n) = 0;
 calls.wq(n) = 0;
 % get service duration, call it "sdur"
%[dur, timeout] = feval(si.svc_dur_func,1,1,si.svc_dur_dist);
% calls.svc_dur(n) = dur;
 sdur = calls.svc_dur(n);

 % schedule next arrival
 etimes(1,1) = tmp;
 ecalls(1,1) = n;
 % now deal with the call that just arrived:
 % four possibilities: enter svc, enter q,
 % enter orbit (balk & retry), or give up(balk¬ retry)
 enter_svc = 0; % just to initialize it
 if(ss.n_sq < nservers) % enter svc
 enter_svc = 1;
 else % servers are full, might balk
 retry = 0; % just to initialize it
 if(ss.n_sq == nservers+si.nbuf)
 balk=1;
 else
 balk= ss.n_sq - nservers >= calls.b_vals(ecall
);
 end
 if(balk)
 % calls.n_tries(ecall) should be 1
 % since this is a fresh outside arrival
 % but we'll do it this way anyway.
%retry = calls.ret_durs(ecall,calls.n_tries(ecall)) >= 0;
% actually, we'll shortcut it to make things go faster.
ret_dur = calls.ret_durs(ecall,1);
retry = ret_dur >= 0;
 end
 end
 if(enter_svc)
 etype_report = 'A';
 ss.n_sq = ss.n_sq + 1;
 % add a svc event
 sdur = calls.svc_dur(ecall);
 % find an open server
 f = find(isinf(etimes(2,:)));
 f = f(1); % just the first open server
 etimes(2,f) = ss.CLK + sdur;
 ecalls(2,f) = ecall;

ggisr_retry_sim_ac.m Page 5

% calls.n_visits(ecall) = calls.n_visits(ecall)+1;
% Since no revisits are allowed, n_visits = 0 or 1
% So we don't need to increment it, just set it to 1.
 calls.n_visits(ecall) = 1;
 elseif(not(balk)) % and not enter_svc: must
 % enter the queue
 etype_report = 'A';
 ss.n_sq = ss.n_sq + 1;
 ss.qlast = mod(ss.qlast+1,si.nbuf);
 ss.callq(ss.qlast+1) = ecall;
 % don't schedule a new event
 calls.qtime(ecall) = ss.CLK;
% calls.n_visits(ecall) = calls.n_visits(ecall)+1;
% Since no revisits are allowed, n_visits = 0 or 1
% So we don't need to increment it, just set it to 1.
 calls.n_visits(ecall) = 1;
 elseif(balk && retry)
 % enter orbit
 etype_report = 'a';
 ss.n_o = ss.n_o + 1;
 % add a retry event
%[dur] = feval(si.r_dur_func,1,1,si.r_dur_dist);
%dur = ret_dur;

%%%%%%%%%%%%%%%%%%%%%
 % find an open retrial event
 f = find(isinf(etimes(3,:)));
 if(length(f) > 0)
 f = f(1); % just the first open retrial
 else % need to make the event calendar bigger
% the tricky part is that the default
% values need to be Inf rather than 0.
% Also, want to expand by more than just 1 slot,
% so we don't spend too much time expanding.
 oldlen = length(etimes(3,:));
 addlen = round(0.5*oldlen);
 etimes = [etimes, Inf*ones(3,addlen)];
 ecalls = [ecalls, NaN*ones(3,addlen)];
 f = 1+oldlen;
 end
 etimes(3,f) = ss.CLK + ret_dur;
 ecalls(3,f) = ecall;
%%%%%%%%%%%%%%%%%%%%%

% this new arrival didn't get served--don't update their # of visits
% calls.n_visits(ecall) = calls.n_visits(ecall)+1;
% wait until they retry to update their n_tries
% calls.n_tries(ecall) = calls.n_tries(ecall)+1;
 calls.wo(ecall) = ret_dur;
 else % balk and not retry = give up
 % no new event to schedule
 % update any call data?
 etype_report = 'b';
 end
%%
 case 's' % service completion
 etype_report = 'S';
 % erase the service completion event
 etimes(2,indcs(indx)) = Inf;
 ecalls(2,indcs(indx)) = NaN;
 % might re-visit; prob depends on if it timed out
%disp('calls.n_visits(ecall)')
%calls.n_visits(ecall)
% revisit_prob = si.v_probs(calls.n_visits(ecall), ...
% 1+calls.timeout(ecall));

ggisr_retry_sim_ac.m Page 6

% revisit = rand(1) < revisit_prob;

% No revisits!
%{
 if(revisit)
% etype_report = 'v';
 % generate a new call record
 par = ecall; % parent
 chi = calls.ncalls + 1; % child
 calls.ncalls = chi;
 calls.n_tries(chi) = 1;
% calls.n_tries(chi) = 0;
 % only as many visits as the parent call,
 % which might get updated if chi gets into svc.
 calls.n_visits(chi)= calls.n_visits(par);
 calls.wq(chi) = 0;
% calls.parent(chi) = par;
% calls.child(par) = chi;
 % get service duration, call it "dur"
%[sdur, timeout] = feval(si.svc_dur_func,1,1,si.svc_dur_dist);
% calls.svc_dur(chi) = sdur;
% calls.timeout(chi) = timeout;
% calls.arriv(chi) = tmp;
% calls.arriv(chi) = ss.CLK+sdur;
 % schedule retry event
%[ret_dur] = feval(si.r_dur_func,1,1,si.r_dur_dist);
ret_dur = 1/0; % cause a warning

%%%%%%%%%%%%%%%%%%%%%
 % find an open retrial event
 f = find(isinf(etimes(3,:)));
 if(length(f) > 0)
 f = f(1); % just the first open retrial
 else % need to make the event calendar bigger
% the tricky part is that the default
% values need to be Inf rather than 0.
% Also, want to expand by more than just 1 slot,
% so we don't spend too much time expanding.
 oldlen = length(etimes(3,:));
 addlen = round(0.5*oldlen);
 etimes = [etimes, Inf*ones(3,addlen)];
 ecalls = [ecalls, NaN*ones(3,addlen)];
 f = 1+oldlen;
 end
 etimes(3,f) = ss.CLK + ret_dur;
 ecalls(3,f) = chi;
 ss.n_o = ss.n_o + 1;
%%%%%%%%%%%%%%%%%%%%%
% should we really update the parent's number of tries here? no!
% calls.n_tries(par) = calls.n_tries(par)+1;
 % and add to the wait time in orbit
 calls.wo(chi) = ret_dur;
 end % if revisit
%}
 % and now pull someone new into service
 if(ss.n_sq > nservers)
 n = ss.callq(ss.qhead+1) ;
 calls.wq(n) = ss.CLK - calls.qtime(n);
 % increment the pointer to the head of the queue
 ss.qhead = mod(ss.qhead+1,si.nbuf);
 % schedule the service completion event
 sdur = calls.svc_dur(n);
 % don't need to find an open server;
 % we know where the just-finished service was.
 etimes(2,indcs(indx)) = ss.CLK + sdur;

ggisr_retry_sim_ac.m Page 7

 ecalls(2,indcs(indx)) = n;
 end
 % Finally, decrement the number in service+queue
 ss.n_sq = ss.n_sq - 1;
%%
 case 'r' % retrial from orbit
 % now deal with the call that just arrived:
 % four possibilities: enter svc, enter q,
 % enter orbit (balk & retry), or give up(balk¬ retry)

 % need to update n_tries; that was not done
 % when it entered orbit.
 calls.n_tries(ecall) = calls.n_tries(ecall) + 1;

 % now determine what happens for this retrial.
 enter_svc = 0; % just to initialize it
 if(ss.n_sq < nservers) % enter svc
 enter_svc = 1;
 else % servers are full, might balk
 retry = 0; % just to initialize it
 if(ss.n_sq == nservers+si.nbuf)
 balk=1;
 else
 balk= ss.n_sq - nservers >= calls.b_vals(ecall
);

 end
 if(balk)
% pr_retry = ...
% si.r_probs(calls.n_tries(ecall));
% retry = rand(1) < pr_retry;
% If this call is trying to use more retrials than we have data for,
% we start re-using retrial durations from the start of its list.
ret_dur = calls.ret_durs(ecall,mod(calls.n_tries(ecall)-1,ncols_ret_durs)+1) ;
retry = ret_dur >= 0;

 end
 end
 % erase the retrial event
 etimes(3,indcs(indx)) = Inf;
 ecalls(3,indcs(indx)) = NaN;
 % and now process the event
 if(enter_svc)
 etype_report = 'R';
 ss.n_sq = ss.n_sq + 1;
 ss.n_o = ss.n_o - 1;
 % add a svc event
 sdur = calls.svc_dur(ecall);
 % find an open server
 f = find(isinf(etimes(2,:)));
 f = f(1); % just the first open server
 etimes(2,f) = ss.CLK + sdur;
 ecalls(2,f) = ecall;
% calls.n_visits(ecall) = calls.n_visits(ecall)+1;
% Since no revisits are allowed, n_visits = 0 or 1
% So we don't need to increment it, just set it to 1.
 calls.n_visits(ecall) = 1;
 elseif(not(balk))
 % enter the queue
 etype_report = 'R';
 ss.n_sq = ss.n_sq + 1;
 ss.n_o = ss.n_o - 1;
 ss.qlast = mod(ss.qlast+1,si.nbuf);
 ss.callq(ss.qlast+1) = ecall;
 % don't schedule a new event

ggisr_retry_sim_ac.m Page 8

 calls.qtime(ecall) = ss.CLK;
% calls.n_visits(ecall) = calls.n_visits(ecall)+1;
% Since no revisits are allowed, n_visits = 0 or 1
% So we don't need to increment it, just set it to 1.
 calls.n_visits(ecall) = 1;
 elseif(balk && retry)
 % re-enter orbit
 etype_report = 'o';
 % re-establish that retry event
 % (nice that we know one is free, instead
 % of possibly expanding the list)
%[dur] = feval(si.r_dur_func,1,1,si.r_dur_dist);
% already generated retry dur
 etimes(3,indcs(indx)) = ss.CLK + ret_dur;
 ecalls(3,indcs(indx)) = ecall;
 calls.wo(ecall) = calls.wo(ecall)+ret_dur;
 else % balk and not retry = give up
 etype_report = 'r';
 ss.n_o = ss.n_o - 1;
 % no new event to schedule
 end
 end; % switch
 % update the sample paths
 paths.path_size = paths.path_size + 1;
 n = paths.path_size;
 if(n > pathlen)
 addlen = round(0.5 * n);
 % more events in the sample path than we expected
 paths.epochs = [paths.epochs ; NaN*ones(addlen,1)];
 paths.etypes(n+addlen) = 'e';
 paths.n_orbit = [paths.n_orbit; NaN*ones(addlen,1)];
 paths.n_sq = [paths.n_sq ; NaN*ones(addlen,1)];
 pathlen = length(paths.epochs);
 end
 paths.epochs(n) = ss.CLK;
 paths.etypes(n) = etype;
 paths.n_orbit(n) = ss.n_o;
 paths.n_sq(n) = ss.n_sq;
 %the n_ columns are the value just _after_ the associated epoch

% old_CLK = ss.CLK;
% get next event
 [tmp_times, indcs] = min(etimes,[],2); % the 2 means operate on rows
 [ss.CLK, indx] = min(tmp_times);
 etype = etypelist(indx);
 ecall = round(ecalls(indx,indcs(indx)));
 % the round() should be redundant,
% but hopefully it will convince matlab that it's an integer, and okay to use
% as an array index.
end % main while loop

% wrap-up: take remaining events off the heap, and
% note them as "leftover"
for ni = 1:size(etimes,1) % for each row of the etimes list
 mine = not(isinf(etimes(ni,:)));
 if(any(mine))
 callids = round(ecalls(ni,mine));
 calls.n_tries(callids) = NaN;
 calls.n_visits(callids) = NaN;
 calls.wq(callids) = NaN;
 calls.wo(callids) = NaN;
 end
end

% Also, truncate the arrays in the "path" structure.

ggisr_retry_sim_ac.m Page 9

n=paths.path_size;
paths.epochs = paths.epochs(1:n);
paths.etypes = paths.etypes(1:n);
paths.n_sq = paths.n_sq(1:n);
paths.n_orbit = paths.n_orbit(1:n);

% And unused calls in the "calls" structure
n=calls.ncalls;
%calls.arriv = calls.arriv(1:n);
%calls.svc_dur = calls.svc_dur(1:n);
%calls.timeout = calls.timeout(1:n);
calls.n_tries = calls.n_tries(1:n);
calls.qtime = calls.qtime(1:n);
calls.wq = calls.wq(1:n);
calls.wo = calls.wo(1:n);
calls.n_visits = calls.n_visits(1:n);
%calls.parent = calls.parent(1:n);
%calls.child = calls.child(1:n);

